Close Menu
May 21, 2019

Implementation of qPCR Mutation Assays for Routine Use in a Hematology/Oncology Lab

Genome Webinar

Senior Specialist Biomedical Scientist, Frontier Pathology

Specialist Biomedical Scientist, Frontier Pathology

Specialist Biomedical Scientist, Frontier Pathology

This webinar will provide a first-hand look at how a hematology/oncology lab in the UK set up and validated three molecular assays for routine in-house use.

Speakers from the Royal Sussex County Hospital (RSCH) laboratory, operated under the Frontier Pathology NHS Partnership, will share their experience implementing two assays for suspected BCR-ABL1-negative myeloproliferative neoplasms.

The RSCH lab has spent the last several years repatriating historical send-away hemato-oncology assays for JAK2 V617F and CALR exon 9. During this webinar, RSCH scientists Munyoro Guvamatanga, Anna Tarasewicz, and Rebecca Lough will share their experiences bringing these assays in-house.

The JAK2 V617F mutation assay was the first to be repatriated in 2015 and is performed using the CE-IVD marked ipsogen JAK2 RGQ PCR kit. More recently, the lab began detecting CALR exon 9 mutations using the CE-IVD marked ipsogen CALR RGQ PCR kit. The assays are performed using gDNA extracted from whole blood samples and subsequent real-time qPCR on the QIAGEN Rotor Gene Q MDx 5Plex HRM platform.

This webinar will describe the experiences and challenges associated with the setup and validation/verification of the assays in the RSCH laboratory.

Jul
23

This webinar will discuss how the Molecular Pathology Laboratory at the University of Oklahoma (OUMP) is using a new quality improvement model to support molecular testing of oncology patients. 

Jul
30
Sponsored by
Mission Bio

This webinar will outline a project that performs large-scale and integrative single-cell genome and transcriptome profiling of pediatric acute lymphoblastic leukemia (ALL) cases at diagnosis, during drug treatment, and in case of relapse.

Jul
31

This webinar will provide a first-hand look at how a molecular laboratory validated and implemented a targeted next-generation sequencing-based myeloid assay to expedite the assessment of myeloid malignancies and assist in the understanding of myeloid cancers.